CS 465

Cryptography Introduction

Outline

- Provide a brief historical background of cryptography
- Introduce definitions and high-level description of four cryptographic primitives we will learn about this semester
 - Symmetric Encryption (AES)
 - Public-Key Cryptography (RSA)
 - Secure One-Way Hash (SHA-1)
 - Message Authentication Code (MAC)

Terminology

Access Control

- Authentication
 - Assurance that entities are who they claim to be
- Authorization
 - Assurance that entities have permission to perform an action

Confidentiality

Prevent the disclosure of sensitive data to unauthorized entities

Integrity

Prevent modification of sensitive data by unauthorized entities

Non-repudiation

- Prevent the ability to later deny that an action took place
- Usually involves cryptographic evidence that will stand up in court

What is Encryption?

- Transforming information so that its true meaning is hidden
 - Requires "special knowledge" to retrieve
- Modern encryption algorithms use transposition and substitution in complex ways that are hard to reverse
- Examples from history that are easy to break
 - o ROT-13 (aka Caesar Cipher) is easy to break, simple substitution cipher
 - Vigenere cipher polyalphabetic substitution cipher
- Examples of strong encryption
 - o AES
 - o 3DES
 - o RC4

Types of Encryption Schemes

http://en.wikipedia.org/wiki/Cipher

Symmetric Encryption

- Also known as
 - Conventional encryption
 - Secret-key encryption
 - Single-key encryption

Symmetric Encryption Model

Requirements

- Two requirements for strong symmetric encryption
 - 1. Strong algorithm (cipher)
 - Attacker is unable to decrypt ciphertext or discover the key even if attacker has samples of ciphertext/plaintext created using the secret key
 - 2. Sender and receiver must securely obtain and store the secret key

Kerckhoffs' Principle

 The security of the symmetric encryption depends on the secrecy of the key, not the secrecy of the algorithm

Dr. Auguste Kerckhoffs (1835-1903)

Dutch linguist and cryptographer

Types of Ciphers

- Block cipher (3DES, AES)
 - Plaintext is broken up into fixed-size blocks
 - Typical block size (64, 128 bits)
- Stream cipher (RC4)
 - Process plaintext continuously
 - Usually one byte at a time

What can go wrong?

Algorithm

- Relying on the secrecy of the algorithm
 - Example: Substitution ciphers
- Using an algorithm incorrectly
 - Example: WEP used RC4 incorrectly

Key

- o Too big
 - Slow
 - Storage
- o Too small
 - Vulnerable to compromise

Big Numbers

- Cryptography uses REALLY big numbers
 - 1 in 2⁶¹ odds of winning the lotto and being hit by lightning on the same day
 - o 292 atoms in the average human body
 - 2¹²⁸ possible keys in a 128-bit key
 - o 2¹⁷⁰ atoms in the planet
 - o 2190 atoms in the sun
 - o 2²³³ atoms in the galaxy
 - 2²⁵⁶ possible keys in a 256-bit key

Thermodynamic Limitations*

- Physics: To set or clear a bit requires no less than kT
 - o k is the Boltzman constant (1.38*10⁻¹⁶ erg/°K)
 - T is the absolute temperature of the system
- Assuming T = 3.2°K (ambient temperature of universe)
 kT = 4.4*10⁻¹⁶ ergs
- Annual energy output of the sun 1.21*10⁴¹ ergs
 - Enough to cycle through a 187-bit counter
- Build a Dyson sphere around the sun and collect all energy for 32 years
 - Enough energy to cycle through a 192-bit counter.
- Supernova produces in the neighborhood of 10⁵¹ ergs
 - Enough to cycle through a 219-bit counter

Perfect Encryption Scheme?

- One-Time Pad (XOR message with key)
- Example*:
 - o Message: ONETIMEPAD
 - o **Key**: TBFRGFARFM
 - Ciphertext: IPKLPSFHGQ
 - The key TBFRGFARFM decrypts the message to ONETIMEPAD
 - o The key POYYAEAAZX decrypts the message to SALMONEGGS
 - The key BXFGBMTMXM decrypts the message to GREENFLUID

Cryptographic Hash Function

Message Authentication Code (MAC)

Figure 3.1 Message Authentication Using a Message Authentication Code (MAC)

Public Key Cryptography

Terminology

- Public Key
- Private Key
- Digital Signature

Confidentiality

You encrypt with a public key, and you decrypt with a private key

Integrity/Authentication

 You sign with a private key, and you verify the signature with the corresponding public key

Examples

- o Diffie-Hellman
- o RSA
- Elliptic Curve Cryptography (ECC)
- Identity-based Encryption (IBE)

Model for Encryption with Public Key Cryptography

Model for Digital Signature with Public Key Cryptography

