Public Key Cryptography

Tim van der Horst & Kent Seamons

Asymmetric Encryption

Why Public Key Crypto is Cool

- Has a linear solution to the key distribution problem
 - Symmetric crypto has an exponential solution
- Send messages to people you don't share a secret key with
 - So only they can read it
 - They know it came for you

Number Theory

Prime Numbers

- Definition: An integer whose only factors are 1 and itself
- There are an infinite number of primes
- How many primes are there?
 - \circ Any large number n has about a 1 in ln(n) chance of being prime

Prime Number Questions*

- If everyone needs a different prime number won't we run out?
 - Approximately 10¹⁵¹ primes 512 bits (or less)
 - o Atoms in the universe: 10⁷⁷
 - If every atom in the universe needed 1 billion primes every microsecond from the beginning of time until now you would need 10¹⁰⁹ primes
 - That means there's still about 10¹⁵¹ left
- What if two people pick the same prime?
 - Odds are significantly less than the odds of your computer spontaneously combusting at the exact moment you win the lotto

Prime Number Questions*

- Couldn't someone create a database of all primes and use that to break public key crypto?
 - Assuming you could store 1 GB/gram, then the weight of a drive containing the
 512-bit primes would exceed the Chandrasar limit and collapse into a black hole

Prime Factorization:

The Fundamental Theorem of Arithmetic

All integers can be expressed as a product of (powers of) primes

```
o 48 = 2 * 2 * 2 * 2 * 3
```

- Factorization is the process of finding the prime factors of a number
- This is a <u>hard</u> problem for large numbers

Greatest Common Divisor (GCD)

- A.k.a., greatest common factor
- The largest number that evenly divides two numbers
 - o GCD (15, 25) = 5

Relatively Prime

- Two numbers x and y are relatively prime if their GCD =
- No common factors except 1
- Example 38 and 55 are relatively prime
 - 0 38 = 2 * 19
 - 0 55 = 5 * 11

Modular (%) Arithmetic

- Sometimes referred to as
 - "clock arithmetic" or
 - "arithmetic on a circle"
- Two numbers a and b are said to be congruent (equal) modulo N iff N/(a-b)
 - Their difference is divisible by N with no remainder
 - Their difference is a multiple of N
 - o a%n = b%n
 - Example 30 and 40 are congruent mod 10
- Modulo operation
 - Find the remainder (residue) 15 mod 10 = 5

Notation

- *Z* the set of integers {...-2,-1,0,1,2...}
- Z_n the set of integers modulo n; {0..n-1}
- Z_n* the multiplicative group of integers modulo n
 - the set of integers modulo n that are relatively prime to n
 - Z_n* is closed under multiplication mod n
 - Z_n* does not contain 0 since the GCD(0,n)=n
 - $\circ Z_{10}^* = ?$
 - $O(Z_{12}^*) = ?$
 - $\circ Z_{14}^* = ?$

Additive Inverse

- In Z, the additive inverse of 3 is -3,
 since 3 + -3 = 0, the additive identity.
- In Z_n , the additive inverse of a is n-a, since a+(n-a) = n, which is congruent to 0 (mod n).
 - What is the additive inverse of 4 mod 10?

Multiplicative Inverse

- In Z, the multiplicative inverse of 3 is 1/3, since 3*1/3=1
- The multiplicative identity in both Z and Z_n is 1
- The multiplicative inverse of 3 mod 10 is 7, since $3*7=21=1 \pmod{10}$
 - This could be written 3⁻¹, or (rarely) 1/3

Distributive Property

- Distribution in + and *
- Modular arithmetic is distributive.

```
a+b \pmod{n} = (a \mod n) + (b \mod n) \pmod{n}
```

Proof of Distributive Property

- Let a=cn+d. Then a%n=d, the remainder after taking out the multiples of n.
- Let b=en+f. Then b%n = f.

```
a + b (mod n
= cn+d + en+f (mod n)
but cn = en = 0 (mod n) (since c and
e are multiples of n), so:
= d + f (mod n)
• = a%n + b%n (mod n).
```

Proof of Distributive Property

 The modulus also distributes into multiplication. Consider a*b%n.

Let a=cn+d and b=en+f, just as before.

Proof of Distributive Property

An example helps:

```
7 * 26 (mod 5)

= (1*5 + 2) * (5*5 + 1) (mod 5)

= 1*5*5*5 + 1*5*1 + 2*5*5 + 2*1 (mod 5)

= 0 + 0 + 0 + 0 + 0 + 0 + 0 (mod 5)

= 0 + 0 + 0 + 0 (mod 5)

= 0 + 0 + 0 + 0 (mod 5)
```

Big Examples

What is the sum of these numbers modulo 20?

1325104987134069812734109243861723406983176 1346139046817340961834764359873409884750983 3632462309486723465794078340898340923876314 3641346983862309587235093857324095683753245 + 2346982743069384673469268723406982374936877

Big Examples

What is the product of these numbers modulo 25?

* 1351839761361377050

Modular Exponentiation

- Problems of the form $c = b^e \mod m$ given base b, exponent e, and modulus m
- If b, e, and m are non-negative and b < m, then a unique solution c exists and has the property 0 ≤ c < m
- For example, $12 = 5^2 \mod 13$
- Modular exponentiation problems are easy to solve, even for very large numbers
- However, solving the <u>discrete logarithm</u> (finding e given c, b, and m) is believed to be difficult

Brute Force Method

- The most straightforward method to calculating a modular exponent is to calculate b^e directly, then to take this number modulo m. Consider trying to compute c, given b = 4, e = 13, and m = 497:
 - One could use a calculator to compute 4^{13} ; this comes out to 67,108,864. Taking this value modulo 497, the answer c is determined to be 445.
 - Note that b is only one digit in length and that e is only two digits in length, but the value be is 10 digits in length.
- In strong cryptography, b is often at least 256 binary digits (77 decimal digits). Consider $b = 5 * 10^{76}$ and e = 17, both of which are perfectly reasonable values. In this example, b is 77 digits in length and e is 2 digits in length, but the value b^e is 1304 decimal digits in length. Such calculations are possible on modern computers, but the sheer enormity of such numbers causes the speed of calculations to slow considerably. As b and e increase even further to provide better security, the value b^e becomes unwieldy.
- The time required to perform the exponentiation depends on the operating environment and the processor. If exponentiation is performed as a series of multiplications, then this requires O(e) time to complete.

Source: wikipedia – modular exponentiation

Diffie Hellman Project

- Write your own modular exponentiation routine
 - Use a bignum library
 - Divide and conquer algorithm O(log e)

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

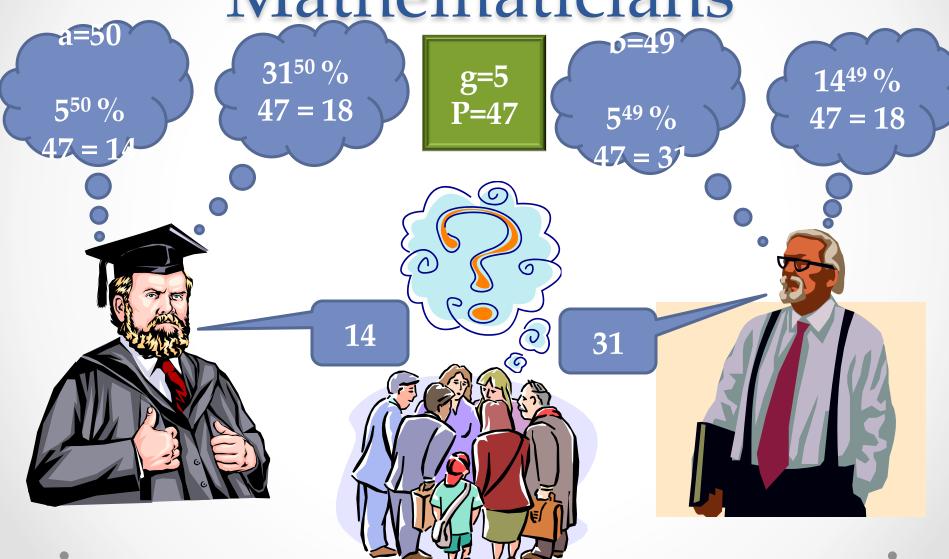
- Allows two users to establish a secret key over an insecure medium without any prior secrets
- Two system parameters p and g.
 - Public values that may be used by all the users in a system
 - Parameter p is a large prime number
 - O Parameter g (usually called a generator) is an integer less than p, such that for every number n with 0 < n < p, there is a power k of g such that $n = g^k \mod p$

g is primitive root

Diffie-Hellman Key Exchange

- Suppose Alice and Bob want to establish a shared secret key
- Alice and Bob agree on or use public values p,g
 - o p is a large prime number
 - o g is a generator
- Alice generates a random private value a and Bob generates a random private value b where a and b are integers
- Alice and Bob derive their public values using parameters p and g and their private values
 - o Alice's public value = $g^a \mod p$
 - Bob's public value is g^b mod p
- Alice and Bob exchange their public values
- Alice computes $g^{ba} = (g^b)^a \mod p$ Bob computes $g^{ab} = (g^a)^b \mod p$
- Since $g^{ab} = g^{ba} = k$, Alice and Bob now have a shared secret key k

A Crowded Room of Mathematicians



Why is DH Secure?

- Discrete logarithm problem
 - Inverse of modular exponentiation
- $c = b^e \mod m$
 - o e is called the "discrete logarithm"
- Solving the <u>discrete logarithm</u> (finding e given c, b, and m) is <u>believed</u> to be <u>difficult</u>

Attacks Against DH

- Diffie-Hellman Key Exchange is secure against a passive attacker
- How can an active attacker disrupt the protocol?
 - Man in the middle
 - Modify Alice/Bob public values as they are exchanged
 - Replace with Eve's public values
 - Replace with the value 1
 - o Replace with h, where h has a small order

Practical Considerations

- Chose a safe prime p where p=2q+1 where q is also prime
- How big should p be?
 - 2048 bits (Source: Cryptography Engineering, Ferguson et al.)
 - Use p, q, and g for performance reasons (smaller subgroup)
 - Check public values for security properties
 - Public values not equal to 1
 - Public values that do not belong in too small a group
 - Hash final result of DH to generate a shared key for Alice/Bob
- How to fortify the protocol against active attackers?
 - Create a certified list of public values
 - Use digitally signed public parameters