EADLY SINS

Slides by Kent Seamons and Tim van der Horst
Last Updated: Dec 2, 2013




tion Sins




Sin 11 - Failing to Handle Errors

When a programmer falils to handle an
error, the program could get into an
insecure state or crash

Program termination opens up a denial
of service vulnerability

Revealing too much information about
an error can aid an attacker

Sample code that is copied and pasted
often leaves out error handling



Sin 11 - Failing to Handle Errors

Five variants
Yielding too much information
Ignoring errors
Misinterpreting errors
Using useless return values
Using non-error return values

Redemptive Steps

Only real step is to make sure you check
return values when appropriate



Sin 11 - Failing to Handle Errors

Do check the return value of every security-
related function

Do check the return value of every function that
changes a user setting or a machine-wide setting

Do make every attempt to recover from error
conditions gracefully, to help avoid DOS problems

Consider using code annotations if they are
available, for example in Microsoft Visual C++

Do not rely on error checking solely using assert
Do not leak error information to untrusted users



Sin 12 - Information Leakage

An attacker obtains data that leads to a security
breech
Accidental, Intentional, Mistake

Examples

Sides Channels
Timing Channels
Storage Channels (file names, file sizes)
Too much information
Detailed version information
Host network information
Application information
Path information
Stack layout information
Along with checking untrusted input, there is a need to
review output to untrusted users



Sin 12 - Information Leakage

Do define who should have access to what error
and status information

Do identify all the sensitive or private data in your
application

Do use appropriate operating system defenses
such as ACLs and permissions

Do use cryptographic means to protect sensitive
data

Do not disclose system status info to untrusted
users

Consider using other operating system defenses
such as file-based encryption



Sin 13 - Race Conditions

When two execution contexts (threads
or processes) interfere with one another

Usually a failure to handle concurrency
correctly

The file changes between the time it

was checked for valid permissions and

the time an operation occurs (delete)
TOCTOU - Time of check, time of use



Sin 13 - Race Conditions

Do write code that doesn’t depend on
side effects

Do be very careful when writing signal
nandlers

Do not modify global resources without
ocking

Consider writing temporary files into a
per-user store instead of a world-
writable space




Sin 14 - Poor Usability

Security is (almost) never the user’s priority
Example — Vista User Account Control (UAC)
Security only works if the secure way happens to
be the easy way — Scott Culp
Presenting security information to users
Too little appropriate information
Too much information
Too many messages
Inaccurate or generic information
Errors with only error codes



Sin 14 - Poor Usability

Example Sins
TLS Certificate Authentication
Root Certificate Installation

Redemption Steps
Make the Ul simple and clear
Make security decisions for users
Make selective relaxation of security policy easy
Clearly indicate consequences
Make it actionable

Provide central management — OS level rather than
application by application



Sin 14 - Poor Usability

Do understand your users’ security needs, and provide the
appropriate information to help them get their jobs done

Do realize that just because you understand some security text,
that does not mean your users do

Do default to a secure configuration whenever possible

Do provide a simple, and easy to understand, message, and allow
for progressive disclosure if needed by more sophisticated users or
admins

Do make security prompts actionable

Do not dump geek-speak in a big honking dialog box
No user will read it

Do not make it easy for users to shoot themselves in the foot
Hide options that can be dangerous

Consider providing ways to relax security policy selectively, but be
explicit and clear about what the user is choosing to allow



Sin 15 - Not Updating Easily

This sin covers a lot of ground

Making patches difficult to install

Getting your users hacked when they update their software
Make user install additional unwanted software

Prompt fatigue

Update without notifying

Forcing reboot

Trusting DNS



Sin 15 - Not Updating Easily

Do sign any code or data your download onto a user’s system
Do validate the signature correctly

Do write temporary files to a trusted location, not a shared
temporary folder

Do write your binary data to a secure location

Do make your patches easy to install. If your app will be deployed
widely in an enterprise, make sure patches can be installed across
many systems easily.

Do write patches into a secured area

Do not trust the network

Do not trust DNS

Do not write temporary files to a shared temporary folder



Sin 16 - Executing Code with Too
Much Privilege

Do plan for least privilege early in your
development cycle

Do run your code with the lowest possible
privilege

Do not run your code with administrative or
root capabilities simply because “stuff
works”

Consider dropping unneeded privileges as
soon as possible to reduce exposure

Consider Linux and BSD capabilities



Sin 17 - Failure to Protect Stored Data

Do apply appropriate permissions or ACLs to files
Do analyze all ACLs and permissions you set
Do encrypt files that store sensitive data

Do store encryption data using operating system
primitives where possible

Do install binaries to protected locations in the file
system



Sin 17 - Failure to Protect Stored Data

Do scan the file system, pre/post installation of
your product, to detect weak ACLs or
permissions

Do not create weak ACLs, such as Everyone:
Full Control or weak permissions such as
World:Write

Consider using permissions and encryption
together

Consider adding an integrity defense to the
sensitive data such as an HMAC or signature



Sin 18 - The Sins of Mobile Code

Do write mobile code in safer technologies such
as .NET and Java

Do assume your mobile code container will render
malicious mobile code

Do fuzz-test your mobile code methods and
properties

Do use as many constraining defenses as possible in
your mobile code container

Do digitally sign your mobile code with a code-
signing private key and certificate

Do SiteLock ActiveX controls
Do not leak sensitive data from mobile code






Sin 19 - Use of Weak
Password-Based Systems

Password compromise

Allowing weak passwords

Iterated passwords (cougars1,cougars?2)
Never changing a password

Default passwords

Replay attacks

Brute-force attacks against password verifiers



Sin 19 - Use of Weak
Password-Based Systems
Storing passwords instead of password

verifiers

Online attacks, including allowing these
to create a denial of service attack

Revealing whether a failure is due to an
Incorrect username or password

Returning a forgotten password instead
of resetting it



Sin 19 - Use of Weak Password-
Based Systems

Examples

MAC OS email client sent email password in
the clear before the user specifies that SSL/
TLS should be used

TENEX bug that leaked timing information

Paris Hilton Hijacking

Attacker reset her password by answering her
“secure” question — what is the name of your
pet?

Sarah Palin Yahoo Email Compromise
Answering questions to reset password



Sin 19 - Use of Weak Password-
Based Systems

Do ensure passwords are not sent in the clear
Do give a single error message for failed login attempts
Do log failed password attempts

Do use strong, salted cryptographic one-way function
based on a hash for password storage

Do provide a secure mechanism for people to change
passwords

Do not make it easy for customer support to reset a
password over the phone

Do not ship with default accounts and passwords
Do not store plaintext passwords on the server
Do not store passwords in code

Do not log the failed password

Do not allow short passwords



Sin 19 - Use of Weak Password-
Based Systems

Consider:

Storage algorithm PBKDF2 that supports making the one-
way hash computationally expensive

Multifactor authentication

Zero-knowledge password protocols

One-time password protocols

Ensuring passwords are strong programmatically

Recommending strategies for coming up with strong
passwords

Automated ways to reset passwords



Sin 20 - Weak Random Numbers

PRNG vs. CRNG

Popular languages have weak PRNG — see the
table in your book



Sin 20 - Weak Random Numbers

Do use the system CRNG

Do make sure the CRNG is seeded with at least
64 bits of entropy, preferably 128 bits

Do fail the user’s current operation if the CRNG
fails for any reason

Do not use a non-cryptographic PRNG for a
cryptographic operation
Do not fall back to a PRNG if the CRNG fails

Consider using hardware RNG in high-assurance
situations



Sin 21 - Using the Wrong Cryptography

Using home-grown cryptography
Using a weak cryptographic primitive
Using the wrong primitive

Failing to use a salt

Not providing an integrity check

Key re-use

Verifying a hash value improperly



Sin 21 - Using the Wrong Cryptography

Do use SSL3 or TLS 1 for channel protection
Do use random salt when appropriate

Do use a random IV for chained block cipher

Do use appropriate cryptographic algorithms
(AES, SHA-2)

Do not build your own crypto
Do not hash concatenated data

Do not build your own secure protocol when a
higher-level protocol will work just as well

Do not use MD4 or MD5, DES, RC4, ECB
Do not use SHA-1 in new code






Sin 22 - Failing to Protect Network
Traffic

Network attacks take a variety of forms
Eavesdropping
Replay
Spoofing
Tampering
Hijacking



Sin 22 - Failing to Protect Network
Traffic

Do use a strong initial authentication scheme
Do perform ongoing message authentication

Do encrypt all data that is sensitive
Do use TLS for your on-the-wire protocols

Do not hardcode keys

Do not hesitate to encrypt data for efficiency
reasons

Do not ignore the security of your data on the
wire

Consider using network-level technologies to
further reduce exposure — firewalls, VPNs, and
load balancers.




Sin 23 - Improper Use of PKI,
especially SSL/TLS

Do understand what services you require from SSL

Do understand what your SSL libraries check by
default
Do verify the certificate

integrity, ownership, expiration, revocation, usage
Do not continue authentication if the certificate
validation fails for any reason

Do not only check the name in a certificate — anyone
can place any name in a certificate

Consider using an OCSP responder when validating
certificates in a trusted chain to ensure that the
certificate hasn’t been revoked



Sin 24 - Trusting Network Name
Resolution

DNS is not secure
The problem is language-independent
UDP poses larger threat than TCP

DNSSEC is one solution that DHS is
promoting (adds authentication/integrity)



Sin 24 - Trusting Network Naming
Resolution

Do use cryptography to establish the
identity of your clients and servers. A
cheap way to do this is through TLS. Be
sure to completely validate certificates.

Do not trust DNS information - it isn’t
reliable!

Consider specifying IPSec for the
systems your application will run on



