
Slides by Kent Seamons and Tim van der Horst
Last Updated: Dec 2, 2013

Sin 11 – Failing to Handle Errors

� When a programmer fails to handle an
error, the program could get into an
insecure state or crash

� Program termination opens up a denial
of service vulnerability

� Revealing too much information about
an error can aid an attacker

� Sample code that is copied and pasted
often leaves out error handling

Sin 11 – Failing to Handle Errors

�  Five variants
�  Yielding too much information
�  Ignoring errors
� Misinterpreting errors
� Using useless return values
� Using non-error return values

� Redemptive Steps
� Only real step is to make sure you check

return values when appropriate

Sin 11 – Failing to Handle Errors

�  Do check the return value of every security-
related function

�  Do check the return value of every function that
changes a user setting or a machine-wide setting

�  Do make every attempt to recover from error
conditions gracefully, to help avoid DOS problems

�  Consider using code annotations if they are
available, for example in Microsoft Visual C++

�  Do not rely on error checking solely using assert
�  Do not leak error information to untrusted users

Sin 12 – Information Leakage
�  An attacker obtains data that leads to a security

breech
�  Accidental, Intentional, Mistake

�  Examples
�  Sides Channels

○  Timing Channels
○  Storage Channels (file names, file sizes)

�  Too much information
○  Detailed version information
○  Host network information
○  Application information
○  Path information
○  Stack layout information

�  Along with checking untrusted input, there is a need to
review output to untrusted users

Sin 12 – Information Leakage
�  Do define who should have access to what error

and status information
�  Do identify all the sensitive or private data in your

application
�  Do use appropriate operating system defenses

such as ACLs and permissions
�  Do use cryptographic means to protect sensitive

data
�  Do not disclose system status info to untrusted

users
�  Consider using other operating system defenses

such as file-based encryption

Sin 13 – Race Conditions

� When two execution contexts (threads

or processes) interfere with one another
� Usually a failure to handle concurrency

correctly
�  The file changes between the time it

was checked for valid permissions and
the time an operation occurs (delete)
�  TOCTOU – Time of check, time of use

Sin 13 – Race Conditions

� Do write code that doesn’t depend on
side effects

� Do be very careful when writing signal
handlers

� Do not modify global resources without
locking

� Consider writing temporary files into a
per-user store instead of a world-
writable space

Sin 14 – Poor Usability
�  Security is (almost) never the user’s priority

�  Example – Vista User Account Control (UAC)
�  Security only works if the secure way happens to

be the easy way – Scott Culp
�  Presenting security information to users

�  Too little appropriate information
�  Too much information
�  Too many messages
�  Inaccurate or generic information
�  Errors with only error codes

Sin 14 – Poor Usability
�  Example Sins

�  TLS Certificate Authentication
�  Root Certificate Installation

�  Redemption Steps
�  Make the UI simple and clear
�  Make security decisions for users
�  Make selective relaxation of security policy easy
�  Clearly indicate consequences
�  Make it actionable
�  Provide central management – OS level rather than

application by application

Sin 14 – Poor Usability
�  Do understand your users’ security needs, and provide the

appropriate information to help them get their jobs done
�  Do realize that just because you understand some security text,

that does not mean your users do
�  Do default to a secure configuration whenever possible
�  Do provide a simple, and easy to understand, message, and allow

for progressive disclosure if needed by more sophisticated users or
admins

�  Do make security prompts actionable
�  Do not dump geek-speak in a big honking dialog box

�  No user will read it
�  Do not make it easy for users to shoot themselves in the foot

�  Hide options that can be dangerous
�  Consider providing ways to relax security policy selectively, but be

explicit and clear about what the user is choosing to allow

Sin 15 – Not Updating Easily
�  This sin covers a lot of ground
�  Making patches difficult to install
�  Getting your users hacked when they update their software
�  Make user install additional unwanted software
�  Prompt fatigue
�  Update without notifying
�  Forcing reboot
�  Trusting DNS

Sin 15 – Not Updating Easily
�  Do sign any code or data your download onto a user’s system
�  Do validate the signature correctly
�  Do write temporary files to a trusted location, not a shared

temporary folder
�  Do write your binary data to a secure location
�  Do make your patches easy to install. If your app will be deployed

widely in an enterprise, make sure patches can be installed across
many systems easily.

�  Do write patches into a secured area
�  Do not trust the network
�  Do not trust DNS
�  Do not write temporary files to a shared temporary folder

Sin 16 – Executing Code with Too
Much Privilege
�  Do plan for least privilege early in your

development cycle
�  Do run your code with the lowest possible

privilege
�  Do not run your code with administrative or

root capabilities simply because “stuff
works”

�  Consider dropping unneeded privileges as
soon as possible to reduce exposure

�  Consider Linux and BSD capabilities

Sin 17 – Failure to Protect Stored Data

�  Do apply appropriate permissions or ACLs to files
�  Do analyze all ACLs and permissions you set
�  Do encrypt files that store sensitive data
�  Do store encryption data using operating system

primitives where possible
�  Do install binaries to protected locations in the file

system

Sin 17 – Failure to Protect Stored Data

�  Do scan the file system, pre/post installation of

your product, to detect weak ACLs or
permissions

�  Do not create weak ACLs, such as Everyone:
Full Control or weak permissions such as
World:Write

�  Consider using permissions and encryption
together

�  Consider adding an integrity defense to the
sensitive data such as an HMAC or signature

Sin 18 – The Sins of Mobile Code

�  Do write mobile code in safer technologies such

as .NET and Java
�  Do assume your mobile code container will render
malicious mobile code

�  Do fuzz-test your mobile code methods and
properties

�  Do use as many constraining defenses as possible in
your mobile code container

�  Do digitally sign your mobile code with a code-
signing private key and certificate

�  Do SiteLock ActiveX controls
�  Do not leak sensitive data from mobile code

Sin 19 – Use of Weak
Password-Based Systems
� Password compromise
� Allowing weak passwords
�  Iterated passwords (cougars1,cougars2)
� Never changing a password
� Default passwords
� Replay attacks
� Brute-force attacks against password verifiers

Sin 19 – Use of Weak
Password-Based Systems
� Storing passwords instead of password

verifiers
� Online attacks, including allowing these

to create a denial of service attack
� Revealing whether a failure is due to an

incorrect username or password
� Returning a forgotten password instead

of resetting it

Sin 19 – Use of Weak Password-
Based Systems
� Examples

� MAC OS email client sent email password in
the clear before the user specifies that SSL/
TLS should be used

�  TENEX bug that leaked timing information
�  Paris Hilton Hijacking
○  Attacker reset her password by answering her

“secure” question – what is the name of your
pet?

�  Sarah Palin Yahoo Email Compromise
○  Answering questions to reset password

Sin 19 – Use of Weak Password-
Based Systems
�  Do ensure passwords are not sent in the clear
�  Do give a single error message for failed login attempts
�  Do log failed password attempts
�  Do use strong, salted cryptographic one-way function

based on a hash for password storage
�  Do provide a secure mechanism for people to change

passwords
�  Do not make it easy for customer support to reset a

password over the phone
�  Do not ship with default accounts and passwords
�  Do not store plaintext passwords on the server
�  Do not store passwords in code
�  Do not log the failed password
�  Do not allow short passwords

Sin 19 – Use of Weak Password-
Based Systems
�  Consider:

�  Storage algorithm PBKDF2 that supports making the one-
way hash computationally expensive

�  Multifactor authentication
�  Zero-knowledge password protocols
�  One-time password protocols
�  Ensuring passwords are strong programmatically
�  Recommending strategies for coming up with strong

passwords
�  Automated ways to reset passwords

Sin 20 – Weak Random Numbers

�  PRNG vs. CRNG
�  Popular languages have weak PRNG – see the

table in your book

Sin 20 – Weak Random Numbers

�  Do use the system CRNG
�  Do make sure the CRNG is seeded with at least

64 bits of entropy, preferably 128 bits
�  Do fail the user’s current operation if the CRNG

fails for any reason
�  Do not use a non-cryptographic PRNG for a

cryptographic operation
�  Do not fall back to a PRNG if the CRNG fails
�  Consider using hardware RNG in high-assurance

situations

Sin 21 – Using the Wrong Cryptography

�  Using home-grown cryptography
�  Using a weak cryptographic primitive
�  Using the wrong primitive
�  Failing to use a salt
�  Not providing an integrity check
�  Key re-use
�  Verifying a hash value improperly

Sin 21 – Using the Wrong Cryptography

�  Do use SSL3 or TLS 1 for channel protection
�  Do use random salt when appropriate
�  Do use a random IV for chained block cipher
�  Do use appropriate cryptographic algorithms

(AES, SHA-2)
�  Do not build your own crypto
�  Do not hash concatenated data
�  Do not build your own secure protocol when a

higher-level protocol will work just as well
�  Do not use MD4 or MD5, DES, RC4, ECB
�  Do not use SHA-1 in new code

Sin 22 – Failing to Protect Network
Traffic
� Network attacks take a variety of forms

�  Eavesdropping
� Replay
�  Spoofing
�  Tampering
� Hijacking

Sin 22 – Failing to Protect Network
Traffic
�  Do use a strong initial authentication scheme
�  Do perform ongoing message authentication
�  Do encrypt all data that is sensitive
�  Do use TLS for your on-the-wire protocols
�  Do not hardcode keys
�  Do not hesitate to encrypt data for efficiency

reasons
�  Do not ignore the security of your data on the

wire
�  Consider using network-level technologies to

further reduce exposure – firewalls, VPNs, and
load balancers.

Sin 23 – Improper Use of PKI,
especially SSL/TLS
�  Do understand what services you require from SSL
�  Do understand what your SSL libraries check by

default
�  Do verify the certificate

�  integrity, ownership, expiration, revocation, usage
�  Do not continue authentication if the certificate

validation fails for any reason
�  Do not only check the name in a certificate – anyone

can place any name in a certificate
�  Consider using an OCSP responder when validating

certificates in a trusted chain to ensure that the
certificate hasn’t been revoked

Sin 24 – Trusting Network Name
Resolution
� DNS is not secure
�  The problem is language-independent
� UDP poses larger threat than TCP
� DNSSEC is one solution that DHS is

promoting (adds authentication/integrity)

Sin 24 – Trusting Network Naming
Resolution

� Do use cryptography to establish the

identity of your clients and servers. A
cheap way to do this is through TLS. Be
sure to completely validate certificates.

� Do not trust DNS information - it isn’t
reliable!

� Consider specifying IPSec for the
systems your application will run on

