Programming Lab #1

- Implement AES
- Use the FIPS 197 spec as your guide
 - Avoid looking at code on the Internet
 - Challenge yourself to implement the algorithm based on sources mentioned in the lab specification
 - The standard provides programming language independent pseudo-code
 - 20 pages in the spec of complete, step by step debugging information to check your solution
Finite Fields

• AES uses the finite field GF(2^8)
 o b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0
 o \{b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0\}

• Byte notation for the element: x^6 + x^5 + x + 1
 o 0x^7 + 1x^6 + 1x^5 + 0x^4 + 0x^3 + 0x^2 + 1x + 1
 o \{01100011\} – binary
 o \{63\} – hex

• Has its own arithmetic operations
 o Addition
 o Multiplication
Finite Field Arithmetic

• Addition (XOR)
 - \((x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2\)
 - \{01010111\} \oplus \{10000011\} = \{11010100\}
 - \{57\} \oplus \{83\} = \{d4\}

• Multiplication is tricky
Finite Field Multiplication (\(\cdot \))

\[(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) =

x^{13} + x^{11} + x^9 + x^8 + 7^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1

= x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1

and

\[x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \pmod{(x^8 + x^4 + x^3 + x + 1)}

= x^7 + x^6 + 1.

These cancel out

Irreducible Polynomial
Efficient Finite Field Multiply

• There’s a better way
 o xtime() – very efficiently multiplies its input by \{02\}
 • This is the same as multiplying a polynomial by x

• Multiplication by higher powers can be accomplished through repeated applications of xtime()
Efficient Finite Field Multiply

Example: \{57\} \cdot \{13\}

\{57\} \cdot \{02\} = \text{xtime}(\{57\}) = \{ae\}
\{57\} \cdot \{04\} = \text{xtime}(\{ae\}) = \{47\}
\{57\} \cdot \{08\} = \text{xtime}(\{47\}) = \{8e\}
\{57\} \cdot \{10\} = \text{xtime}(\{8e\}) = \{07\}

\{57\} \cdot \{13\} = \{57\} \cdot (\{01\} \oplus \{02\} \oplus \{10\})
= \{57\} \cdot (\{01\} \oplus \{02\} \oplus \{10\})
= (\{57\} \cdot \{01\}) \oplus (\{57\} \cdot \{02\}) \oplus (\{57\} \cdot \{10\})
= \{57\} \oplus \{ae\} \oplus \{07\}
= \{fe\}
AES Parameters

- **Nb** – Number of columns in the State
 - For AES, $\text{Nb} = 4$

- **Nk** – Number of 32-bit words in the Key
 - For AES, $\text{Nk} = 4$, 6, or 8

- **Nr** – Number of rounds (function of Nb and Nk)
 - For AES, $\text{Nr} = 10$, 12, or 14
AES methods

• Convert to state array

• Transformations (and their inverses)
 • AddRoundKey
 • SubBytes
 • ShiftRows
 • MixColumns

• Key Expansion
Inner Workings

• See Flash demo URL on course Lectures pages