Our focus is currently on Bayesian approaches to NLP. Here's a partial bibliography:

Bayesian approaches to NLP

Bibliographies

Seminal

T.S. Ferguson. A Bayesian analysis of some nonparametric problems. Annals of Statistics 1:209-230, 1973. http://www.jstor.org/view/00905364/di983860/98p00275/0]

C.E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Annals of Statistics 2:1152-1174, 1974. ://www.jstor.org/view/00905364/di983870/98p0275d/0

Foundational

M.D. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90:577-588, 1995. ://www.jstor.org/view/01621459/di986004/98p0224o/0

S.N. MacEachern and P. Muller. Estimating mixture of Dirichlet process models. Journal of Computational and Graphical Statistics, 7:223-238, 1998. ://links.jstor.org/sici?sici=1061-8600%28199806%297%3A2%3C223%3AEMODPM%3E2.0.CO%3B2-9

R.M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249-265, 2000. ://www.cs.utoronto.ca/~radford/ftp/mixmc.pdf

C.E. Rasmussen. The Infinite Gaussian Mixture Model. NIPS, 2000. ://www.kyb.mpg.de/publications/pdfs/pdf2299.pdf

H. Ishwaran and L. James. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96:161-173, 2001. ://www.bio.ri.ccf.org/Resume/Pages/Ishwaran/stickBreaking.pdf

Graphical Models

D. McAllester, M. Collins, F. Pereira. Case-Factor Diagrams for Structured Probabilistic Modeling. ??

NLP, Clustering

D.M. Blei, T.L. Griffiths, M.I. Jordan, and J.B. Tenenbaum. Hierarchical topic models and the nested Chinese restaurant process. NIPS, 2004. ://cog.brown.edu/~gruffydd/papers/ncrp.pdf

Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierarchical Dirichlet processes. NIPS, 2004. ://www.cs.toronto.edu/~ywteh/research/npbayes/nips2004a.pdf

Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierarchical Dirichlet Processes. Tech Report. Last updated: 8th Oct'04 ://www.cs.toronto.edu/~ywteh/research/npbayes/report.pdf

T. Griffiths, M. Steyvers, D. Blei, and J. Tenenbaum. Integrating Topics and Syntax. In press, Advances in Neural Information Processing Systems (NIPS) 17, 2004. ://www.cs.berkeley.edu/~blei/papers/syntax-semantics.pdf

D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning Research, 3:993-1022, January 2003. ://www.cs.berkeley.edu/~blei/papers/blei03a.pdf

R. Madsen, D. Kauchak, C. Elkan. Modeling Word Burstiness Using the Dirichlet Distribution. ICML 2005

A. McCallum, A. Corrada-Emmanuel, X. Wang. Topic and Role Discovery in Social Networks. ??

X. Wang, N. Mohanty, A. McCallum. Group and Topic Discovery from Relations and Text. LinkKDD-2005.

A. McCallum, A. Corrada-Emmanuel, X. Wang. The Author-Recipient-Topic Model for Topic and Role Discovery in Social Networks: Experiments with Enron and Academic Email.

NLP, Language Modeling

S. Goldwater, T. Griffiths, M. Johnson. Interpolating Between Types and Tokens by Estimating Power-Law Generators. NIPS 2005

D. MacKay, L. Bauman Peto. A Hierarchical Dirichlet Language Model. Natural Language Engineering 1(1). 1994.

Yeh Whye Teh. A Bayesian Interpretation of Kneser-Ney Smoothing (?). NIPS 2005 Workshop on Bayesian NLP. Draft available.

Software

Nonparametric Bayesian inference software, Yee Whye Teh: ://www.cs.berkeley.edu/~ywteh/

nlp/reading-group.txt · Last modified: 2015/04/21 22:33 by ryancha
Back to top
CC Attribution-Share Alike 4.0 International
chimeric.de = chi`s home Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0