Differences

This shows you the differences between two versions of the page.

Link to this comparison view

nlp:reading-group [2015/04/21 22:33] (current)
ryancha created
Line 1: Line 1:
 +Our focus is currently on Bayesian approaches to NLP.  Here's a partial bibliography:​
  
 +=Bayesian approaches to NLP=
 +
 +===Bibliographies===
 +Beal: [http://​www.cs.toronto.edu/​~beal/​npbayes/​papers.html]
 +
 +NIPS 2005: [http://​aluminum.cse.buffalo.edu:​8080/​npbayes/​nipsws05/​resources]
 +
 +Griffiths’s reading list: [http://​cog.brown.edu/​~gruffydd/​bayes.html]
 +
 +===Seminal===
 +T.S. Ferguson. A Bayesian analysis of some nonparametric problems. Annals of Statistics 1:209-230, 1973. http://​www.jstor.org/​view/​00905364/​di983860/​98p00275/​0]
 +
 +C.E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Annals of Statistics 2:​1152-1174,​ 1974. [http://​www.jstor.org/​view/​00905364/​di983870/​98p0275d/​0]
 +
 +===Foundational===
 +M.D. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association,​ 90:577-588, 1995. [http://​www.jstor.org/​view/​01621459/​di986004/​98p0224o/​0]
 +
 +S.N. MacEachern and P. Muller. Estimating mixture of Dirichlet process models. Journal of Computational and Graphical Statistics, 7:223-238, 1998. [http://​links.jstor.org/​sici?​sici=1061-8600%28199806%297%3A2%3C223%3AEMODPM%3E2.0.CO%3B2-9]
 +
 +R.M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249-265, 2000. [http://​www.cs.utoronto.ca/​~radford/​ftp/​mixmc.pdf]
 +
 +C.E. Rasmussen. The Infinite Gaussian Mixture Model. NIPS, 2000. [http://​www.kyb.mpg.de/​publications/​pdfs/​pdf2299.pdf]
 +
 +H. Ishwaran and L. James. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association,​ 96:161-173, 2001. [http://​www.bio.ri.ccf.org/​Resume/​Pages/​Ishwaran/​stickBreaking.pdf]
 +
 +===Graphical Models===
 +D. McAllester, M. Collins, F. Pereira. ​ Case-Factor Diagrams for Structured Probabilistic Modeling. ​ ??
 +
 +===NLP, Clustering===
 +D.M. Blei, T.L. Griffiths, M.I. Jordan, and J.B. Tenenbaum. Hierarchical topic models and the nested Chinese restaurant process. NIPS, 2004. [http://​cog.brown.edu/​~gruffydd/​papers/​ncrp.pdf]
 +
 +Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierarchical Dirichlet processes. NIPS, 2004. [http://​www.cs.toronto.edu/​~ywteh/​research/​npbayes/​nips2004a.pdf]
 +
 +Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierarchical Dirichlet Processes. ​ Tech Report. ​ Last updated: 8th Oct'​04 ​
 +[http://​www.cs.toronto.edu/​~ywteh/​research/​npbayes/​report.pdf]
 +
 +T. Griffiths, M. Steyvers, D. Blei, and J. Tenenbaum. Integrating Topics and Syntax. ​ In press, Advances in Neural Information Processing Systems (NIPS) 17, 2004. [http://​www.cs.berkeley.edu/​~blei/​papers/​syntax-semantics.pdf]
 +
 +D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning Research, 3:993-1022, January 2003. [http://​www.cs.berkeley.edu/​~blei/​papers/​blei03a.pdf] ​
 +
 +R. Madsen, D. Kauchak, C. Elkan. ​ Modeling Word Burstiness Using the Dirichlet Distribution. ​ ICML 2005
 +
 +A. McCallum, A. Corrada-Emmanuel,​ X. Wang.  Topic and Role Discovery in Social Networks. ​ ??
 +
 +X. Wang, N. Mohanty, A. McCallum. ​ Group and Topic Discovery from Relations and Text.  LinkKDD-2005.
 +
 +A. McCallum, A. Corrada-Emmanuel,​ X. Wang.  The Author-Recipient-Topic Model for Topic and Role Discovery in Social Networks: ​ Experiments with Enron and Academic Email.
 +
 +===NLP, Language Modeling===
 +S. Goldwater, T. Griffiths, M. Johnson. Interpolating Between Types and Tokens by Estimating Power-Law Generators. ​ NIPS 2005
 +
 +D. MacKay, L. Bauman Peto.  A Hierarchical Dirichlet Language Model. ​ Natural Language Engineering 1(1).  1994.
 +
 +Yeh Whye Teh.  A Bayesian Interpretation of Kneser-Ney Smoothing (?).  NIPS 2005 Workshop on Bayesian NLP.  Draft available.
 +
 +===Software===
 +Nonparametric Bayesian inference software, Yee Whye Teh:  [http://​www.cs.berkeley.edu/​~ywteh/​]
nlp/reading-group.txt · Last modified: 2015/04/21 22:33 by ryancha
Back to top
CC Attribution-Share Alike 4.0 International
chimeric.de = chi`s home Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0